Gaussian Process Change Point Models
نویسندگان
چکیده
•Combine Bayesian change point detection with Gaussian Processes to define a nonstationary time series model. •Central aim is to react to underlying regime changes in an online manner. •Able to integrate out all latent variables and optimize hyperparameters sequentially. •Explore three alternative ways of augmenting GP models to handle nonstationarity (GPTS, ARGPCP and NSGP – see below). •A Bayesian approach (BOCPD) for online change point detection was introduced in [1]. •BOCPD introduces a latent variable representing the run length at time t and adapts predictions via integrating out the run length. •BOCPD has two key ingredients: –Any model which can construct a predictive density for future observations, in particular, p(xt|x(t−τ ):(t−1), θm), i.e., the “underlying predictive model” (UPM). –A hazard function H(r|θh) which encodes our prior belief in a change point occuring after observing a run length r.
منابع مشابه
Properties of Spatial Cox Process Models
Probabilistic properties of Cox processes of relevance for statistical modeling and inference are studied. Particularly, we study the most important classes of Cox processes, including log Gaussian Cox processes, shot noise Cox processes, and permanent Cox processes. We consider moment properties and point process operations such as thinning, displacements, and superpositioning. We also discuss...
متن کاملEstimating the Time of a Step Change in Gamma Regression Profiles Using MLE Approach
Sometimes the quality of a process or product is described by a functional relationship between a response variable and one or more explanatory variables referred to as profile. In most researches in this area the response variable is assumed to be normally distributed; however, occasionally in certain applications, the normality assumption is violated. In these cases the Generalized Linear Mod...
متن کاملDynamic Frailty and Change Point Models for Recurrent Events Data
Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...
متن کاملBayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملA robust wavelet based profile monitoring and change point detection using S-estimator and clustering
Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...
متن کاملDrift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data
Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...
متن کامل